“只有最好的数学家才能理解和提出实际问题中的数学模型,一步步地做,做了几十年后,想问题就深入了。”
“现在在国内,宣传我的话基本上都是讲哥德巴赫猜想,但实际上我研究哥德巴赫猜想时只有20多岁,年轻时做了几年,后面几十年不完全做纯粹数学这个东西了。从1958年开始,我这一生大概做了50多年的交叉数学、应用数学。”
今年8月底,就海洋之神8590vip数学与系统科学研究院筹建国家数学与交叉科学中心之事,数学家王元院士在北京中关村的办公室接受了《科学时报》专访。他说:“交叉科学和应用数学不简单,要最好的数学家去做,而不是差的数学家去做。最好的数学家能不能做,还是一个问题,搞得好、搞出一个成果来,也要几十年。”
从最初从事哥德巴赫猜想的研究、到与华罗庚教授合作、致力于数论在近似分析中的应用,到与方开泰教授合作、将数论方法应用于数理统计并创建了均匀方法,王元讲述了自己从事数学和交叉科学研究的经历。
“结缘数论”
1952年,王元以优异成绩从浙江大学数学系毕业,经陈建功和苏步青两位数学教授的推荐,由国家统一分配到北京海洋之神8590vip数学研究所工作。临别前,陈建功对他说:“你是我们嫁出去的‘女儿’,要好好跟华罗庚学习,他是中国最好的数学家。”
进所一年多后,需要选择研究方向,在此之前,华罗庚出了一道数论的题目开卷考大家,考完后,华罗庚说:“王元,你跟我搞数论,就这样定了吧!”他高兴地回答:“好啊!”
从此,王元一生结缘数论。
从1953年冬季开始,华罗庚亲自领导了两个讨论班,一个是“数论导引”,一个是“哥德巴赫猜想”。哥德巴赫猜想是德国数学家哥德巴赫1742年在写给大数学家欧拉的信中提出的。在1900年召开的第二届国际数学家大会上,德国数学家希尔伯特给20世纪的数学家提出了23个问题,哥德巴赫猜想就是其中第八个问题的一部分。华罗庚则在20世纪30年代就开始研究这一问题。
在谈到为什么要选择哥德巴赫猜想作为讨论班的主题时,华罗庚曾说:“我并不是要你们在这个问题上作出成果来。我的着眼点是哥德巴赫猜想跟解析数论中所有的重要方法都有联系,因此以哥德巴赫猜想为主题来学习,将可以学会解析数论中最重要的方法……哥德巴赫猜想美极了,现在还没有一个方法可以解决它。”
在华罗庚的带领下,中国的数学家们开始向哥德巴赫猜想进军。在中国,王元首先将解析数论中的筛法用于哥德巴赫猜想的研究。1956年,他证明了命题“3+4”,1957年,又证明了“2+3”,这是中国学者首次在这一研究领域跃居世界领先地位,也是当时哥德巴赫猜想的最好成果。华罗庚高兴地对王元说:“真想不到你在哥德巴赫猜想本身就做出成果……你要是能再进一步就好了,但如果上不去的话,你这一辈子也就是这样了。”
老师的话不幸被言中。1957年,27岁的王元就不再做哥德巴赫猜想了,但他的数学研究并没有因此停步,数论将他带入另一个更吸引他的领域:交叉和应用数学。
1958年,从文献到文献
1957年,王元和华罗庚在数学所看见一份苏联科学院的总结报告,报告中提到他们做得最好的两项工作:一项是排队论,涉及到运筹学;一项是数论与多重积分近似计算的关系。
“看了之后,我们一下子就觉得这是一个方向,学学再说。学了之后发现,这个工作与华老过去做的数论工作还有关系,所以我们马上就去做了,当时很快就做出一个成果来,把我们给吸引了。”王元回忆道。
“本来我做哥德巴赫猜想做得好好的,干嘛不做了呢?因为这个有了结果,被吸引住了,走进去了,这时就必须要放弃一边。”
王元和华罗庚共同做的这个项目是数论在近似分析中的应用,即多重(高维)积分的近似计算。“这个问题本身是计算数学的问题,但我们用的方法是数论,而且也用到了函数论和分析论的很多东西,所以,这就叫交叉学科。”
他们很快有了一系列的成果,论文发表在《中国科学》期刊上。1974年,17届国际数学家大会在加拿大温哥华召开,大会邀请华罗庚就此研究作演讲,国际学术界将他们的定理称为“华—王方法”。
“但是,因为当时‘文革’还没有结束,华老未能成行。因为我们的论文是‘文革’前用英文发表的,所以外面的数学家们能看见。‘文革’让我们吃了亏,许多该发表的文章都没有发表,因为《中国科学》关门了。”
尽管如此,他们的成果依然得到国际学术界的认可和尊重。1981年,德国斯普林格出版社出版了两人的专著——《数论在近似分析中的应用》。王元说:“这应该是改革开放后,中国第一本在斯普林格出版的书,这是交叉学科的一个成果。”
这是王元第一次涉足交叉学科,“我们第一次的做法就是从文献到文献,这条道路也是必须要走的,因为刚开始不知道怎么起步。我们的成果还是理论成果较多一点,真正要应用的部分不是太多,因为它是从文献到文献。”
1978年,从任务到学科
1978年,在海洋之神8590vip数学研究所从事数理统计的专家方开泰,找到了王元,希望他能帮助解决现实中遇到的多个变数的试验设计问题。
方开泰1963年毕业于北京大学数理统计专业,之后在中科院攻读研究生。“他这个人很厉害,经常到工厂等实际单位,了解并解决了许多实际问题,遇到了多个变数的试验设计问题后,解决不了,于是找到我。”王元说,“后来,我想想,应该把跟华老搞高维近似计算的方法挪用来搞统计,多个变数的统计。从1978年开始,我们搞了20多年,现在也算把这个学科搞得比较成熟了,这就叫均匀设计。”
王元解释说,均匀设计理论的发展是从任务到学科,由任务来带动的。任务来自军队。在讲解时,实际背景被抽掉了,问题是这样的:天上有一架飞机,这架飞机有速度、方向和风向;然后,在船上要发一个导弹来击中飞机,导弹也有速度、方向和风向,如何设计才能让两边正好撞上?
“因为飞机和导弹的速度都很快,所以要很快算出来,算慢了就打不着了。这个问题用老方法算不出来,或者算出来但所需时间太长了,所以要有新方法,这就要用到数论的方法。后来,把这个问题解决了,他们用这个原理设计了指挥仪,还得了一个科学技术进步奖,我们发展了理论方法,也写了一本书——《统计中的数论方法》,1994年由英国查普曼和霍尔公司出版。当时参加我们均匀设计讨论班的好多年轻人,现在在美国都有挺好的位置,因为他们会应用。”
王元高兴地表示,现在,均匀设计的理论得到了国际国内更好的承认,国外统计百科全书和统计手册都介绍了这种方法,但最重要的是国外的一个重要软件统计包,也把这种方法放进去了;美国福特汽车公司也用这种方法发展了新型的汽车引擎,并将之作为公司电脑仿真试验的常规方法之一,方开泰也两次应邀到福特公司讲解这种方法。
30年后,2008年,因合作研究“均匀试验设计的理论、方法及其应用”,王元和方开泰共同获得了国家自然科学奖二等奖。
“这就叫应用数学。”王元说,“就是一个交叉,用各种方法来解决一个问题,问题解决了,再发展理论,就丰富了数学学科。先不谈发展方法,首先要解决问题,问题解决不了,后面的方法都是空谈。这与纯粹数学差不多,纯粹数学是一个问题,我们要用各种各样的方法来解决它,比如庞加莱猜想是一个拓扑学的问题,但最后是用分析的方法把它解决掉了,发展了数学,这就是交叉。”
应用数学非常重要
“我们中国以前没有应用数学,1952年,我刚大学毕业时,还不怎么知道有应用数学这个东西,过去我们中国数学家基本上是孤立地搞数学,也不知道交叉;1956年,钱学森从美国回来,第一次倡导运筹学,我们才知道世界上还有应用数学这么一个东西。现在,应用数学变得非常重要了,今天如果还有人认为应用数学不重要,那么这个人肯定非常愚蠢。应用数学是很重要的,它是慢慢来的。”王元说。
王元认为,微分方程的发明其实就是古典的应用数学,当时,牛顿为解决天体运动而发明了微积分,但现在的应用数学完全不是这么一回事,各种各样的问题都很厉害,光是一个分支可能与数学就是个兄弟的关系,比方说在国外大学,统计学是一个独立的系,不属于数学系,信息科学自己是一个信息学院,但也是应用数学;计算科学也是如此。
王元说:“纯粹数学和应用数学应该没有严格的界线,它们都是由问题带动而发展的,最早的数学来源于外部,最早的几何学也是来源于外部,但随着数学科学的发展,数学内部产生出来的问题,也成为数学发展的一种内在动力。比如哥德巴赫猜想‘1+1’的证明本身没有什么意思,证明它的意义在于通过它来发展数学,把数学发展好。”
“数学不可能凭空发展,总要有个问题带动才能发展,所以交叉是对的;也就是说,用一种孤立的方法来解决一个问题,有时是解决不了的,你必须用各种各样的方法,这就叫交叉。”
谈到数学和系统科学研究院即将成立的数学与交叉科学中心,王元提出两点意见:
“第一,搞数学也好,搞交叉学科也好,一定要用问题来带动,这个很重要,如果一个人脑子里已经没问题了,那么他就很糟糕了,就完了。当初华老先生就是由华林问题带动他,我最早是哥德巴赫猜想带动的,陈景润是三角和带动的,所以,现在的年轻人首先要有一个问题来带动,或者用实际问题带动也可能,或者解决国家重大问题也可以,我想航天部肯定搞得不错,以航天问题带动,把许多年轻人都培养出来了。
“但选什么问题,需要有一个战略眼光,这不容易,你现在问我我也不知道,我已经80岁了,多年不作研究了,具体我也说不清楚,但年轻人要是完全没有的话,就很糟。今天中国数学发展需要有领袖数学家。
“第二,目标要搞清楚,现在我们的目标被转换掉了,将一个不是目标的东西偷换成目标。这句话怎么讲?数学家由问题带动,我的目标就是解决这个问题,或者推动或改进;现在的目标是什么呢?中学生的目标就是考进北大、清华,进了研究领域后,目标就是当教授、院士,这不叫目标啊?一个人如果将这些东西当目标,就不配做一个数学家。
“当然,这是一个导向问题,导向不对,怎么怪年轻人呢?不能一方面拿钱鼓励年轻人,一方面又叫人家淡泊名利。评价方法是一个导向,要有正确的、符合科学规律的评价方法。”
王元最后强调,今天的研究条件比过去好多了,但人是最重要的,要给大家自由的环境。